Modeling tillage and manure application on soil phosphorous loss under climate change

Phosphorus (P) losses from non-point sources into receiving water bodies play a significant role in eutrophication. Given their failure to adequately control eutrophication in the Lake Erie, conservation recommendations for agricultural watersheds should be reconsidered, particularly under climate change. Using the Environmental Policy Integrated Climate model, the potential impacts on crop yield, surface runoff, tile drainage, and relevant dissolved reactive phosphorus (DRP) losses from manure-amended corn-soybean rotation plots in the Lake Erie basin were estimated for six tillage methods with different mixing efficiencies and manure broadcast application. These were investigated under twelve different regional and global future climate simulations. Tillage alone proved to have only a minor impact on mean corn yield (+/- 2%). Climate change led to large uncertainties under the single tillage treatment. As a result of the combined effects of biogeochemical processes (e.g., supply) and hydrological (e.g., transport), strong negative relationships (R-2 = 0.98) were found between tillage mixing efficiency and DRP loss in surface runoff, tile drainage, and total DRP loss. The impacts of combined manure application (broadcast) and tillage on crop yield and flow volume were similar as those of tillage alone. With respect to total DRP losses, the effects of labile P content change outweighed those of surface runoff or tile drainage change (hydrologic). This resulted in a change in total DRP losses ranging from - 60% to + 151%, with being closely correlated with decreasing tillage mixing efficiency (R-2 = 0.94) from moldboard to no-till. Therefore, rotational tillage should be considered for DRP loss reduction and energy saving.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : North American Regional Climate Change Assessment Program dataset

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wang, Z.
Zhang, T.
Tan, C. S.
Xue, Lulin
Bukovsky, Melissa
Qi, Z.
Publisher UCAR/NCAR - Library
Publication Date 2022-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T16:06:05.289115
Metadata Record Identifier edu.ucar.opensky::articles:25183
Metadata Language eng; USA
Suggested Citation Wang, Z., Zhang, T., Tan, C. S., Xue, Lulin, Bukovsky, Melissa, Qi, Z.. (2022). Modeling tillage and manure application on soil phosphorous loss under climate change. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7c82dv7. Accessed 11 August 2025.

Harvest Source