A bayesian approach for statistical–physical bulk parameterization of rain microphysics. Part I: Scheme description

A new framework is proposed for the bulk parameterization of rain microphysics: the Bayesian Observationally Constrained Statistical-Physical Scheme (BOSS). It is designed to facilitate direct constraint by observations using Bayesian inference. BOSS combines existing process-level microphysical knowledge with flexible process rate formulations and parameters constrained by observations within a Bayesian framework. Using a raindrop size distribution (DSD) normalization method that relates DSD moments to one another via generalized power series, generalized multivariate power expressions are derived for the microphysical process rates as functions of a set of prognostic DSD moments. The scheme is flexible and can utilize any number and combination of prognostic moments and any number of terms in the process rate formulations. This means that both uncertainty in parameter values and structural uncertainty associated with the process rate formulations can be investigated systematically, which is not possible using traditional schemes. In this paper, BOSS is compared to two- and three-moment versions of a traditional bulk rain microphysics scheme (denoted as MORR). It is shown that some process formulations in MORR are analytically equivalent to the generalized power expressions in BOSS using one or two terms, while others are not. BOSS is able to replicate the behavior of MORR in idealized one-dimensional rainshaft tests, but with a much more flexible and systematic design. Part II of this study describes the application of BOSS to derive rain microphysical process rates and posterior parameter distributions in Bayesian experiments using Markov chain Monte Carlo sampling constrained by synthetic observations.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Morrison, Hugh
van Lier-Walqui, Marcus
Kumjian, Matthew R.
Prat, Olivier P.
Publisher UCAR/NCAR - Library
Publication Date 2020-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:35:39.051608
Metadata Record Identifier edu.ucar.opensky::articles:23247
Metadata Language eng; USA
Suggested Citation Morrison, Hugh, van Lier-Walqui, Marcus, Kumjian, Matthew R., Prat, Olivier P.. (2020). A bayesian approach for statistical–physical bulk parameterization of rain microphysics. Part I: Scheme description. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7rv0rxs. Accessed 24 June 2025.

Harvest Source