Aircraft-based aerosol sampling in clouds: Performance characterization of flow-restriction aerosol inlets

Interaction of liquid cloud droplets and ice particles with aircraft aerosol inlets can result in the generation of a large number of secondary particles and contaminate aerosol measurements. Recent studies have shown that a sampler designed with a perpendicular subsampling tube located within a flow-through conduit (i.e., a flow-restriction inlet) was best suited for in-cloud sampling. Analysis of field data obtained from different flow-restriction inlets shows that their critical cloud droplet breakup diameters are strongly dependent on design details and operating conditions. Using computational fluid dynamics (CFD) simulations, in-cloud sampling performance of a selected inlet can be predicted reasonably accurately for known operating conditions. To understand the relation between inlet design parameters and its sampling performance, however, CFD calculations are impractical. Here, using a simple, representative one-dimensional velocity profile and a validated empirical droplet breakup criteria, a parametric study is conducted to understand the relationship between different inlet design features and operating conditions on its critical breakup diameters. The results of this study suggest that an optimal inlet for in-cloud aerosol sampling should have a combination of a restriction nozzle at the aft end of the flow-through conduit to minimize wall-impaction shatter artifacts and a blunt leading edge to minimize shatter artifact generation from the aerodynamic breakup of cloud droplets. Inlets for in-cloud aerosol sampling from aircraft will, therefore, differ significantly in design from those used for clear-air aerosol sampling.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Craig, Lucas
Moharreri, Arash
Rogers, David
Anderson, Bruce
Dhaniyala, Suresh
Publisher UCAR/NCAR - Library
Publication Date 2014-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:22:25.678858
Metadata Record Identifier edu.ucar.opensky::articles:14487
Metadata Language eng; USA
Suggested Citation Craig, Lucas, Moharreri, Arash, Rogers, David, Anderson, Bruce, Dhaniyala, Suresh. (2014). Aircraft-based aerosol sampling in clouds: Performance characterization of flow-restriction aerosol inlets. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d76974k1. Accessed 23 June 2025.

Harvest Source