Lower-tropospheric influences on the timing and intensity of afternoon severe convection over modest terrain in a convection-allowing ensemble

A 50-member convection-allowing ensemble is used to examine effects of daytime PBL evolution and ambient flow interacting with modest terrain features on convection initiation (CI) in the lee of the Rocky Mountains. The examined case (4 June 2015) has isolated supercell storms that initiate during mid- to late afternoon along the northern portion of the Palmer Lake Divide, which is a ~0.5-km-deep zonally oriented terrain feature in east-central Colorado that extends eastward from the Rocky Mountains. To diagnose factors most crucial to storm development, two 10-member subensembles are constructed from the full 50-member ensemble. One subensemble (STRONG) has storm locations with mature storm intensities, and average timing of CI similar to that observed. The other subensemble (WEAK) has fewer storms, with generally weaker intensity, and delayed CI. Environmental composites constructed from these subensembles reveal a stronger surface horizontal convergence zone and moisture gradient in STRONG, resulting from 2–3.5 m s−1 stronger southerly winds on the south flank of the convergence zone. The stronger southerlies result from accelerated PBL growth and momentum mixing in the presence of strong low-to-mid-tropospheric vertical shear, which is facilitated by reduced above-PBL static stability in the composite STRONG initial condition. Stronger time-averaged low-to-mid-tropospheric upward motion coincides with the surface convergence zone in STRONG, and individual CI locations occur at the northeastern edge of the composite vertical motion maximum. Trajectory analysis with STRONG members confirms that the CI locations are consistent with large vertical displacements, and corresponding relative humidity increases leading to decreases in convective inhibition, as the southerly airstream ascends across the convergence zone.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : MetPy

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Trier, Stanley B.
Romine, Glen S.
Ahijevych, David A.
Sobash, Ryan A.
Publisher UCAR/NCAR - Library
Publication Date 2019-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:08:18.107048
Metadata Record Identifier edu.ucar.opensky::articles:22906
Metadata Language eng; USA
Suggested Citation Trier, Stanley B., Romine, Glen S., Ahijevych, David A., Sobash, Ryan A.. (2019). Lower-tropospheric influences on the timing and intensity of afternoon severe convection over modest terrain in a convection-allowing ensemble. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7rn3c1n. Accessed 28 June 2025.

Harvest Source