Optimal network design applied to monitoring and forecasting surface temperature in Antarctica

As harsh weather conditions in Antarctica make it difficult to support a dense weather observing network there, it is critical to place new weather stations in locations that are optimal for a given monitoring goal. Here we demonstrate a network design algorithm that uses ensemble sensitivity to identify optimal locations for new automatic weather stations in Antarctica. We define the optimal location as one that maximizes the reduction in total variance of a given spatial field. Using WRF Model forecast output from the Antarctic Mesoscale Prediction System (AMPS), we identify the best locations for observations across the continent by considering two spatial fields: (i) the daily 0000 UTC 2-m temperature analysis field and (ii) the daily 0000 UTC 2-m air temperature 24-h forecast field. We explore the impact of spatial localization on the results, finding that a covariance length scale of 3000 km is appropriate for these metrics. We find optimal locations assuming that no stations exist on the continent (blank slate) and conditional on existing stations (CD90). In the "blank slate" scenario, the Megadunes region emerges as the most important location to both monitor temperature and reduce temperature forecast errors, with the Ronne Coast and the Siple Coast following. Results for the monitoring and forecasting metrics are similar for the CD90 subset as well, indicating that additional stations could benefit multiple performance goals. Considering the CD90 subset, Wilkes Land-Adelie Coast, Ellsworth Land, and Queen Maud Land-Interior are identified as regions to consider installing new stations for optimizing network performance.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Meteorological Society


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hakim, Gregory J.
Bumbaco, Karin A.
Tardif, Robert
Powers, Jordan G.
Publisher UCAR/NCAR - Library
Publication Date 2020-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:23:18.082549
Metadata Record Identifier edu.ucar.opensky::articles:23140
Metadata Language eng; USA
Suggested Citation Hakim, Gregory J., Bumbaco, Karin A., Tardif, Robert, Powers, Jordan G.. (2020). Optimal network design applied to monitoring and forecasting surface temperature in Antarctica. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d77s7rzj. Accessed 30 June 2025.

Harvest Source