The potential benefits of handling mixture statistics via a bi‐Gaussian EnKF: Tests with all‐sky satellite infrared radiances

The meteorological characteristics of cloudy atmospheric columns can be very different from their clear counterparts. Thus, when a forecast ensemble is uncertain about the presence/absence of clouds at a specific atmospheric column (i.e., some members are clear while others are cloudy), that column's ensemble statistics will contain a mixture of clear and cloudy statistics. Such mixtures are inconsistent with the ensemble data assimilation algorithms currently used in numerical weather prediction. Hence, ensemble data assimilation algorithms that can handle such mixtures can potentially outperform currently used algorithms. In this study, we demonstrate the potential benefits of addressing such mixtures through a bi-Gaussian extension of the ensemble Kalman filter (BGEnKF). The BGEnKF is compared against the commonly used ensemble Kalman filter (EnKF) using perfect model observing system simulated experiments (OSSEs) with a realistic weather model (the Weather Research and Forecast model). Synthetic all-sky infrared radiance observations are assimilated in this study. In these OSSEs, the BGEnKF outperforms the EnKF in terms of the horizontal wind components, temperature, specific humidity, and simulated upper tropospheric water vapor channel infrared brightness temperatures. This study is one of the first to demonstrate the potential of a Gaussian mixture model EnKF with a realistic weather model. Our results thus motivate future research toward improving numerical Earth system predictions though explicitly handling mixture statistics.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : The potential benefits of handling mixture statistics via a bi-Gaussian EnKF: Tests with all-sky satellite infrared radiances

Related Dataset #2 : NCEP/CPC L3 Half Hourly 4km Global (60S - 60N) Merged IR V1

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Chan, Man‐Yau
Chen, Xingchao
Anderson, Jeffrey L.
Publisher UCAR/NCAR - Library
Publication Date 2023-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:19:55.573599
Metadata Record Identifier edu.ucar.opensky::articles:26166
Metadata Language eng; USA
Suggested Citation Chan, Man‐Yau, Chen, Xingchao, Anderson, Jeffrey L.. (2023). The potential benefits of handling mixture statistics via a bi‐Gaussian EnKF: Tests with all‐sky satellite infrared radiances. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7w099vj. Accessed 27 June 2025.

Harvest Source