Stronger decadal variability of the Kuroshio Extension under simulated future climate change

Understanding the behavior of western boundary current systems is crucial for predictions of biogeochemical cycles, fisheries, and basin-scale climate modes over the midlatitude oceans. Studies indicate that anthropogenic climate change induces structural changes in the Kuroshio Extension (KE) system, including a northward migration of its oceanic jet. However, changes in the KE temporal variability remain unclear. Using large ensembles of a global coupled climate model, we show that in response to increasing greenhouse gases, the time scale of KE sea surface height (SSH) shifts from interannual scales toward decadal and longer scales. We attribute this increased low-frequency KE variability to enhanced mid-latitude oceanic Rossby wave activity induced by regional and remote atmospheric forcing, due to a poleward shift of midlatitude surface westerly with climatology and an increase in the tropical precipitation activity, which lead to stronger atmospheric teleconnections from El Nino to the midlatitude Pacific and the KE region. Greenhouse warming leads to both a positive (elongated) KE state that restricts ocean perturbations (e.g., eddy activity) and stronger wind-driven KE fluctuations, which enhances the contributions of decadal KE modulations relative to short-time scale intrinsic oceanic KE variations. Our spectral analyses suggest that anthropogenic forcing may alter the future predictability of the KE system.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Joh, Y.
Delworth, T. L.
Wittenberg, A. T.
Cooke, W. F.
Rosati, Anthony
Zhang, Liping
Publisher UCAR/NCAR - Library
Publication Date 2022-08-02T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T16:01:04.498989
Metadata Record Identifier edu.ucar.opensky::articles:25616
Metadata Language eng; USA
Suggested Citation Joh, Y., Delworth, T. L., Wittenberg, A. T., Cooke, W. F., Rosati, Anthony, Zhang, Liping. (2022). Stronger decadal variability of the Kuroshio Extension under simulated future climate change. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7mc93sg. Accessed 15 August 2025.

Harvest Source