Using synthetic tracers as a proxy for summertime PM2.5 air quality over the Northeastern United States in physical climate models

Fine particulate matter (PM2.5) is a criteria pollutant. Its sensitivity to meteorology implies its distribution will likely change with climate shifts. Limited availability of global climate models with full chemistry complicates efforts to assess rigorously the uncertainties in the PM2.5 response to a warming climate. We evaluate the potential for PM2.5 distributions in a chemistry-climate model under current-day and warmer climate conditions over the Northeastern United States to be represented by a Synthetic Aerosol tracer (SAt). The SAt implemented into the Geophysical Fluid Dynamics Laboratory chemistry-climate model (AM3) follows the protocol of a recent multimodel community effort (HTAP), with CO emissions, 25-day chemical lifetime, and wet deposition rate of sulfate. Over the Northeastern United States, the summer daily time series of SAt correlates strongly with that of PM2.5, with similar cumulative density functions under both present and future climate conditions. With a linear regression model derived from PM2.5 and SAt in the current-day simulation, we reconstruct both the current-day and future PM2.5 daily time series from the simulated SAt. This reconstruction captures the summer mean PM2.5, the incidence of days above the 24-h mean PM2.5 NAAQS, and PM2.5 responses to climate change. This reconstruction also works over other polluted Northern Hemispheric regions and in spring. Our proof-of-concept study demonstrates that simple tracers can be developed to mimic PM2.5, including its response to climate change, as an easy-to-implement and low-cost addition to physical climate models that should help air quality managers to reap the benefits of climate models that have no chemistry.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Fang, Yuanyuan
Fiore, Arlene
Lamarque, Jean-Francois
Horowitz, Larry
Lin, Meiyun
Publisher UCAR/NCAR - Library
Publication Date 2013-02-28T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:45:56.763332
Metadata Record Identifier edu.ucar.opensky::articles:12601
Metadata Language eng; USA
Suggested Citation Fang, Yuanyuan, Fiore, Arlene, Lamarque, Jean-Francois, Horowitz, Larry, Lin, Meiyun. (2013). Using synthetic tracers as a proxy for summertime PM2.5 air quality over the Northeastern United States in physical climate models. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d74m95c0. Accessed 21 June 2025.

Harvest Source