Assimilation of global satellite leaf area estimates reduces modeled global carbon uptake and energy loss by terrestrial ecosystems

Carbon, water and energy exchange between the land and atmosphere controls how ecosystems either accelerate or ameliorate the effect of climate change. However, evaluating improvements to processes controlling carbon cycling, water use and energy exchange in global land surface models (LSMs) remains challenging in part because of persistent model errors in estimating leaf area. Here we evaluate the changes in global carbon, water and energy exchange brought about when a LSM prognostic estimates of leaf area are made consistent with estimates from satellites. This approach achieves two aims; first to quantify the effect of ignoring errors in leaf area index (LAI) on land-atmosphere fluxes and second, to evaluate how closely this LSM replicates fluxes with and without an LAI constraint. We implemented an ensemble Kalman filter with spatiotemporal adaptive inflation to more closely match community land model (CLM5.0) estimates of leaf area to those from the Global Inventory Modeling and Mapping Studies leaf area index (LAI3g) product. We then evaluate the model's estimates of gross primary productivity (GPP) and latent heat flux (LE) against well established global estimates of these fluxes. We find that the model is biased high by 27% relative to the LAI3g product. Moreover, the effect of bias in LAI is substantial for GPP (18%) and LE (6%) and likely to confound efforts to refine processes controlling these fluxes. This data assimilation approach serves as a method to evaluate the efficacy of refinements to flux processes until the processes controlling the dynamics of LAI are better resolved in LSMs.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Fox, Andrew M.
Huo, X.
Hoar, Timothy J.
Dashti, H.
Smith, W. K.
MacBean, N.
Anderson, Jeffrey L.
Roby, M.
Moore, D. J. P.
Publisher UCAR/NCAR - Library
Publication Date 2022-08-11T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T16:00:47.768609
Metadata Record Identifier edu.ucar.opensky::articles:25648
Metadata Language eng; USA
Suggested Citation Fox, Andrew M., Huo, X., Hoar, Timothy J., Dashti, H., Smith, W. K., MacBean, N., Anderson, Jeffrey L., Roby, M., Moore, D. J. P.. (2022). Assimilation of global satellite leaf area estimates reduces modeled global carbon uptake and energy loss by terrestrial ecosystems. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d72f7s63. Accessed 31 July 2025.

Harvest Source