A constant pressure upper boundary formulation for models employing height-based vertical coordinates

For the numerical simulation of atmospheric flows that extend as high as the thermosphere, it is more appropriate to represent the upper boundary of the model domain as a material surface at constant pressure rather than one characterized by a rigid lid. Consequently, in adapting the Model for Prediction Across Scales (MPAS) for geospace applications, a modification of the height-based vertical coordinate is presented that permits the coordinate surfaces at upper levels to transition toward a constant pressure surface at the model's upper boundary. This modification is conceptually similar to a terrain-following coordinate at low levels, but now modifies the coordinate surfaces at upper levels to conform to a constant pressure surface at the model top. Since this surface is evolving in time, the height of the upper boundary is adaptively adjusted to follow a designated constant pressure upper surface. This is accomplished by applying the hydrostatic equation to estimate the change in height along the boundary that is consistent with the vertical pressure gradient at the model top. This alteration in the vertical coordinate requires only minor modifications and little additional computational expense to the original height-based time-invariant terrain-following vertical coordinate employed in MPAS. The viability of this modified vertical coordinate formulation has been verified in a 2D prototype of MPAS for an idealized case of upper-level diurnal heating.

Significance Statement Most atmospheric numerical models that use a height-based vertical coordinate employ a rigid lid at the top of the model domain. While a rigid lid works well for applications in the troposphere and stratosphere, it is not well suited for applications extending into the thermosphere where significant vertical expansion/contraction occurs due to deep heating/cooling of the atmosphere. This paper develops and tests a simple modification to the height-based coordinate formulation that allows the height of the upper boundary to adaptively follow a constant pressure surface. This added flexibility in the treatment of the upper domain boundary for height-based models may be particularly beneficial in facilitating their transition to a deep atmosphere configuration without significant retooling of the model numerics.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Klemp, Joseph B.
Skamarock, William C.
Publisher UCAR/NCAR - Library
Publication Date 2022-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:41:18.368398
Metadata Record Identifier edu.ucar.opensky::articles:25793
Metadata Language eng; USA
Suggested Citation Klemp, Joseph B., Skamarock, William C.. (2022). A constant pressure upper boundary formulation for models employing height-based vertical coordinates. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7057krd. Accessed 26 June 2025.

Harvest Source