A feed forward neural network based on model output statistics for short-term hurricane intensity prediction

A feed forward neural network (FFNN) is developed for tropical cyclone (TC) intensity prediction, where intensity is defined as the maximum 1-min average 10-m wind speed. This deep learning model incorporates a real-time operational estimate of the current intensity and predictors derived from Hurricane Weather Research and Forecasting (HWRF; 2017 version) Model forecasts. The FFNN model is developed with the operational constraint of being restricted to 6-h-old HWRF data. Best track intensity data are used for observational verification. The forecast training data are from 2014 to 2016 HWRF reforecast data and cover a wide variety of TCs from both the Atlantic and eastern Pacific Ocean basins. Cross validation shows that the FFNN increasingly outperforms the operational observation-adjusted HWRF (HWFI) in terms of mean absolute error (MAE) at forecast lead times from 3 to 57 h. Out-of-sample testing on real-time data from 2017 shows the HWFI produces lower MAE than the FFNN at lead times of 24 h or less and similar MAEs at later lead times. On the other hand, the 2017 data indicate significant potential for the FFNN in the prediction of rapid intensification (RI), with RI defined here as an intensification of at least 30 kt (1 kt approximate to 0.51 m s(-1)) in a 24-h period. The FFNN produces 4 times the number of hits in HWFI for RI. While the FFNN has more false alarms than the HWFI, Brier skill scores show that, in the Atlantic, the FFNN has significantly greater skill than the HWFI and probabilistic Statistical Hurricane Intensity Prediction System RI index.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Cloud, Kirkwood A.
Reich, Brian J.
Rozoff, Christopher M.
Alessandrini, Stefano
Lewis, William E.
Delle Monache, Luca
Publisher UCAR/NCAR - Library
Publication Date 2019-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:08:53.181181
Metadata Record Identifier edu.ucar.opensky::articles:22679
Metadata Language eng; USA
Suggested Citation Cloud, Kirkwood A., Reich, Brian J., Rozoff, Christopher M., Alessandrini, Stefano, Lewis, William E., Delle Monache, Luca. (2019). A feed forward neural network based on model output statistics for short-term hurricane intensity prediction. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7ks6svb. Accessed 25 June 2025.

Harvest Source