Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts

Several spatial forecast verification methods have been developed that are suited for high-resolution precipitation forecasts. They can account for the spatial coherence of precipitation and give credit to a forecast that does not necessarily match the observation at any particular grid point. The methods were grouped into four broad categories (neighborhood, scale separation, features based, and field deformation) for the Spatial Forecast Verification Methods Intercomparison Project (ICP). Participants were asked to apply their new methods to a set of artificial geometric and perturbed forecasts with prescribed errors, and a set of real forecasts of convective precipitation on a 4-km grid. This paper describes the intercomparison test cases, summarizes results from the geometric cases, and presents subjective scores and traditional scores from the real cases. All the new methods could detect bias error, and the features-based and field deformation methods were also able to diagnose displacement errors of precipitation features. The best approach for capturing errors in aspect ratio was field deformation. When comparing model forecasts with real cases, the traditional verification scores did not agree with the subjective assessment of the forecasts.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Ahijevych, David
Gilleland, Eric
Brown, Barbara
Ebert, Elizabeth
Publisher UCAR/NCAR - Library
Publication Date 2009-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:56:54.641716
Metadata Record Identifier edu.ucar.opensky::articles:15190
Metadata Language eng; USA
Suggested Citation Ahijevych, David, Gilleland, Eric, Brown, Barbara, Ebert, Elizabeth. (2009). Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7vd70gz. Accessed 21 June 2025.

Harvest Source