On the application of an observations-based machine learning parameterization of surface layer fluxes within an atmospheric large-eddy simulation model

Recently, machine learning techniques have been employed to develop improved models for predicting surface-layer fluxes of momentum, heat and moisture based on field observations. Herein we explore refinement to these models, in particular artificial neural networks (NN), and investigate their applicability within an atmospheric large-eddy simulation model as an alternative to the widely adopted standard of Monin - Obukhov (MO) similarity theory. Atmospheric boundary layer (ABL) simulations under different stability conditions are carried out for a variety of scenarios of increasing complexity, from dry steady neutral boundary layers to moist diurnal cycle. Simulations using the NN models result in predicted flux differences with respect to the corresponding MO simulations that are consistent with NN model skill in predicting the tower observations. These differences lead to notable modifications of mean and turbulence quantities throughout the ABL. While these NN models provide an alternative to improve upon MO, it is demonstrated that thorough scrutiny in design and evaluation is necessary to prevent unphysical predictions and establish a robust and generalizable parameterization. Design aspects considered include input feature engineering, applicability under inputs obtained from different heights, biased predictions due to climatological fingerprints, and sensitivity to the choice of activation function. In this context, it is shown how an atmospheric model can contribute toward efficiently investigating these relevant aspects, including expanding the training data set to generalize the NN model to a range of surface roughness values. Finally, we outline remaining challenges to be addressed toward developing a universal parameterization for surface-layer fluxes using machine learning techniques.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Muñoz‐Esparza, Domingo
Becker, Charlie
Sauer, Jeremy A.
Gagne, David John
Schreck, John
Kosović, Branko
Publisher UCAR/NCAR - Library
Publication Date 2022-08-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:18:13.462382
Metadata Record Identifier edu.ucar.opensky::articles:25611
Metadata Language eng; USA
Suggested Citation Muñoz‐Esparza, Domingo, Becker, Charlie, Sauer, Jeremy A., Gagne, David John, Schreck, John, Kosović, Branko. (2022). On the application of an observations-based machine learning parameterization of surface layer fluxes within an atmospheric large-eddy simulation model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d73j3hrs. Accessed 22 June 2025.

Harvest Source