Separating emission and meteorological drivers of mid-21st-century air quality changes in India based on multiyear global-regional chemistry-climate simulations

Many Indian metropolitan areas currently suffer from severe air pollution such as PM2.5, which might continue into future decades, dependent on the trends in emission growth and regional climate. Based on a multiyear Nested Regional Climate Model coupled with Chemistry simulation, we developed a daily index (Hazy Weather Index for India, HWII) to characterize the meteorology-pollution relationship over three heavily polluted cities (Delhi, Kolkata, and Mumbai) and Indo-Gangetic Plain. HWII consists of near-surface (10 m) zonal wind (U10) and temperature at 200 hPa (T200) over the northwestern Indian Ocean, and local planetary boundary layer height. The simulated PM2.5 levels during the Historical Period (1997-2004) exhibit robust negative correlation with the HWII. The negative correlation captures day-to-day covariability of surface PM2.5 and meteorology, highlighting the role of monsoon-related large-scale circulation in redistributing locally emitted pollutants. More importantly, two future (2046-2054) simulations with regional warming under the Representative Concentration Pathway 6.0 and 8.5 were analyzed. The future changes in HWII and the three predictive meteorological variables work in favor of a stronger pollution horizontal dispersion and vertical ventilation and thus could lead to a reduction of PM2.5 level by 7%. The meteorology-driven reduction in PM2.5, however, is overwhelmed by the projected growth in anthropogenic emission (especially under Representative Concentration Pathway 8.5 emission by 31%). Our results are contrary to previous studies over other regions (e.g., China) where future climate change might contribute to PM2.5 increase.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author WU, X.
Xu, Y.
Kumar, Rajesh
Barth, Mary
Publisher UCAR/NCAR - Library
Publication Date 2019-12-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:23:09.385603
Metadata Record Identifier edu.ucar.opensky::articles:23099
Metadata Language eng; USA
Suggested Citation WU, X., Xu, Y., Kumar, Rajesh, Barth, Mary. (2019). Separating emission and meteorological drivers of mid-21st-century air quality changes in India based on multiyear global-regional chemistry-climate simulations. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7zs30q9. Accessed 21 August 2025.

Harvest Source