Turbulence and gravity waves within an upper-level front

High-resolution dropwindsonde and in-flight measurements collected by a research aircraft during the Severe Clear-Air Turbulence Colliding with Aircraft Traffic ( SCATCAT) experiment and simulations from numerical models are analyzed for a clear-air turbulence event associated with an intense upper-level jet/frontal system. Spectral, wavelet, and structure function analyses performed with the 25-Hz in situ data are used to investigate the relationship between gravity waves and turbulence. Mesoscale dynamics are analyzed with the 20-km hydrostatic Rapid Update Cycle ( RUC) model and a nested 1-km simulation with the nonhydrostatic Clark-Hall ( CH) cloud-scale model.', Turbulence occurred in association with a wide spectrum of upward propagating gravity waves above the jet core. Inertia-gravity waves were generated within a region of unbalanced frontogenesis in the vicinity of a complex tropopause fold. Turbulent kinetic energy fields forecast by the RUC and CH models displayed a strongly banded appearance associated with these mesoscale gravity waves ( horizontal wavelengths of similar to 120-216 km). Smaller-scale gravity wave packets ( horizontal wavelengths of 1-20 km) within the mesoscale wave field perturbed the background wind shear and stability, promoting the development of bands of reduced Richardson number conducive to the generation of turbulence. The wavelet analysis revealed that brief episodes of high turbulent energy were closely associated with gravity wave occurrences. Structure function analysis provided evidence that turbulence was most strongly forced at a horizontal scale of 700 m.', Fluctuations in ozone measured by the aircraft correlated highly with potential temperature fluctuations and the occurrence of turbulent patches at altitudes just above the jet core, but not at higher flight levels, even though the ozone fluctuations were much larger aloft. These results suggest the existence of remnant fossil turbulence from earlier events at higher levels, and that ozone cannot be used as a substitute for more direct measures of turbulence. The findings here do suggest that automated turbulence forecasting algorithms should include some reliable measure of gravity wave activity.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2005 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Koch, S.
Jamison, B.
Lu, C.
Smith, T.
Tollerud, E.
Girz, C.
Wang, N.
Lane, Todd
Shapiro, M.
Parrish, D.
Cooper, O.
Publisher UCAR/NCAR - Library
Publication Date 2005-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:27:55.412400
Metadata Record Identifier edu.ucar.opensky::articles:9378
Metadata Language eng; USA
Suggested Citation Koch, S., Jamison, B., Lu, C., Smith, T., Tollerud, E., Girz, C., Wang, N., Lane, Todd, Shapiro, M., Parrish, D., Cooper, O.. (2005). Turbulence and gravity waves within an upper-level front. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7x92c38. Accessed 29 June 2025.

Harvest Source