Toward carbon neutrality: Projecting a desert-based photovoltaic power network circumnavigating the globe

Carbon, the human's most reliable fuel type in the past, must be neutralized in this century toward the Paris Agreement temperature goals. Solar power is widely believed a key fossil fuel substitute but suffers from the needs of large space occupation and huge energy storage for peak shaving. Here, we propose a solar network circumnavigating the globe to connecting large-scale desert photovoltaics among continents. By evaluating the generation potential of desert photovoltaic plants on each continent (taking dust accumulation into account) and the hourly maximum transmission potential that each inhabited continent can receive (taking transmission loss into account), we find that the current total annual human demand for electricity will be more than met by this solar network. The local imbalanced diurnal generation of photovoltaic energy can be made up by transcontinental power transmission from other power stations in the network to meet the hourly electricity demand. We also find that laying solar panels over a large space may darken the Earth's surface, but this albedo warming effect is orders of magnitude lower than that of CO2 released from thermal power plants. From practical needs and ecological effects, this powerful and stable power network with lower climate perturbability could potentially help to phase out global carbon emissions in the 21st century.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhou, Y.
Liu, J.
Ge, W.
He, Cenlin
Ma, J.
Tao, S.
Publisher UCAR/NCAR - Library
Publication Date 2023-03-22T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:53:26.103495
Metadata Record Identifier edu.ucar.opensky::articles:26660
Metadata Language eng; USA
Suggested Citation Zhou, Y., Liu, J., Ge, W., He, Cenlin, Ma, J., Tao, S.. (2023). Toward carbon neutrality: Projecting a desert-based photovoltaic power network circumnavigating the globe. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7sq94fd. Accessed 01 August 2025.

Harvest Source