Using A-train observations to evaluate East Pacific cloud occurrence and radiative effects in the Community Atmosphere Model

Using information from the A-Train satellites, the properties and radiative effects of eastern Pacific Ocean boundary layer clouds are evaluated in the Community Atmosphere Model, version 5 (CAM5), from the summer of 2007 and 2008. The cloud microphysical properties are inferred using measurements from CloudSat and CALIPSO (CC) that are then used to calculate the broadband radiative flux profiles. Accounting appropriately for sampling differences between the measurements and the simulation, evidence of the "too few, too bright'' low cloud bias is found in CAM5. Single-layer low clouds have a frequency of occurrence of 42% from CC, as compared with just 29% in CAM5, and the averaged cloud radiative kernel (CRK) for the model shows stronger cooling. For stratocumulus in particular, the cooling in the model CRK is larger by a factor of 2 relative to the observations, implying an overly sensitive tropical low cloud feedback. Differences in the day/night occurrence of stratocumulus help to explain some of the difference in the CRK. The cloud-type microphysics for liquid clouds is represented reasonably well by the model, with a tendency for smaller water paths and smaller effective radii. Overall, the occurrence and CRK have partially compensating errors such that the net cooling at the top of the atmosphere for eastern Pacific low clouds is -43 W m(-2) in CAM5, as compared with -32 W m(-2) from CC. The cooling effect in the model is accomplished by fewer low clouds with a narrower range of properties, as compared with more clouds with a broader range of properties in the observation-based dataset.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Berry, E.
Mace, G. G.
Gettelman, Andrew
Publisher UCAR/NCAR - Library
Publication Date 2020-07-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:17:37.043319
Metadata Record Identifier edu.ucar.opensky::articles:24053
Metadata Language eng; USA
Suggested Citation Berry, E., Mace, G. G., Gettelman, Andrew. (2020). Using A-train observations to evaluate East Pacific cloud occurrence and radiative effects in the Community Atmosphere Model. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d73x8b0j. Accessed 05 August 2025.

Harvest Source